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1 Introduction

Differences-in-Differences (DID) is arguably one of the most popular methods for policy evaluation.
In its standard version, it allows to identify the causal effect of a binary treatment on a given outcome,
even when units are not allocated randomly to the treatment. The idea is to compare the evolution
of the average outcome of the treatment group, which receives a treatment after a certain date, with
that of the control group, which remains untreated. The DID strategy builds on the so-called common
trend assumption, viz. the assumption that the changes in Y (0), the potential outcome absent the
treatment, are identical between the treatment and the control group. One way to see this condition
is that treatment changes should be exogenous in that they are not related to changes in Y (0). Under
common trends, the average time trend on Y (0) can be identified using the control group, as this
group does not experience the effect of the treatment. Once this time trend is accounted for, we can
identify the average treatment effect by a simple before-after comparison on the treatment group.

A crucial limitation of the standard DID framework is that the treatment is required to be binary.
Yet, in many cases, units experience various treatment intensities, and not just a zero-one treatment.
Examples include, among many others, unemployment benefits, specific public expenditures (e.g.,
hospitals expenditure per capita, teacher’s wages), changes in prices, in income etc. Usual solutions
in such cases are to either consider a linear model or to discretize the treatment. Both solutions are
problematic. In the first case, the model cannot account for, e.g., unobservable terms affecting both
treatment intensity and treatment effects, effectively assuming that the treatment has the same effect
for every level of treatment intensity. In the second case, discretization introduces arbitrariness and
leads to an information loss. E.g., after discretization, even vastly different income changes would be
assumed to have the same effect, because all that matters is the fact that they change. This makes
the DID framework not useful to study, e.g., causal marginal propensities to consume out of income,
because individuals at low levels of income are more likely to face liquidity constraints than individuals
at high levels, and the size of the income change arguably matters (see, e.g., Hsieh, 2003).

In this paper, we propose a solution that circumvents these issues. Specifically, we show identification of
several treatment effect parameters, allowing for nonlinear and heterogeneous effects of the treatment
without imposing functional form restrictions (e.g., linearity), nor any discretization. We also allow
for heterogeneous time trends on potential outcomes. This is important, since assuming the same time
trends for all units may be overly restrictive. Firms or individuals with different productivities may
be affected differently by macroeconomic shocks, for instance.

The idea behind our identification strategy retains the spirit of the DID approach. We use the fact
that the distribution of the treatment, in our case a continuous random variable, changes over time
for some exogenous reason, yet some units remain at the same level of treatment. In our approach,
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the latter units form the control group, which allows us to identify the (heterogeneous) time trend
on potential outcomes. Once this time trend has been removed, the distribution of the appropriately
modified potential outcome does not vary over time any longer. Then, any difference over time in
the distribution of the modified, observed outcome should be solely due to the treatment. With this
insight, we can identify causal effects of the treatment.

To make this strategy operational, we rely on three main assumptions. First, we assume that units
sharing the same rank in the distribution of the treatment at two different periods have the same
distribution of the unobservables governing potential outcomes. This assumption is related to the
aforementioned exogeneity of the change in the distribution of the treatment over time. It first
ensures that groups, similar to the control and treatment group with binary treatments, may be defined
through the ranking of the treatment. With this construction of groups, the condition becomes almost
the same as Assumptions 1 and 3 in Athey and Imbens (2006), on which our paper builds to identify
(heterogeneous) time trends. Second, we assume that a unit with stable unobservables in two different
periods will also have the same ranking in the distributions of potential outcome in these two periods.
Again, this assumption is identical to Assumption 2 in Athey and Imbens (2006). Third, we suppose
that the change in the distribution of the treatment is heterogeneous, in the sense that the cumulative
distribution functions (cdfs) of the treatment variable between the two periods cross. This crossing
point defines the control group and allows us to identify the heterogeneous time trends.

Despite some similarities with the nonlinear difference-in-differences setting of Athey and Imbens
(2006), our continuous treatment set-up exhibits several important distinct features. First, Athey and
Imbens (2006) focus on the binary treatment case, while we consider a continuous treatment. Second,
our control group is determined by the data rather than fixed ex ante. While our paper also shares
some similarities with the paper by de Chaisemartin and D’Haultfœuille (2018), the framework and
identification strategy is nonetheless very different: In particular, de Chaisemartin and D’Haultfœuille
(2018) focus on binary (or ordered) treatments. With a continuous treatment, their strategy would
require to have a control group for which the whole distribution of the treatment variable would remain
unchanged over time, an assumption unlikely to be satisfied in practice. In contrast, we only require
the distribution of the treatment to change in such a way that there exists a crossing point. A change
in the mean and the variance of a normal distribution, for instance, satisfies this requirement.

We consider several extensions to our main setup. First, we show how covariates can be included
into our analysis. Second, we establish that our model extends in a straightforward way to multi-
dimensional continuous treatments. Third, we show that while a number of parameters cannot be
point identified, basically because time only provides us with limited exogenous variations, they can
be partially identified using weak local curvature conditions. Finally, we prove that under functional
form restrictions that still allow for ample heterogeneity, we can point identify all marginal effects.
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Based on this extensive identification analysis, we also develop nonparametric sample counterparts
estimators. While our estimators of the average and quantile effects involve several nonparametric
steps, each one of these steps is straightforward to perform. We show the asymptotic normality of
the estimators. When the “control group” corresponds to a single point of support of the continuous
treatment, the estimators are not root-n consistent, but converge at standard univariate nonparametric
rates.

Finally, we apply our methodology to analyze the marginal propensity to consume in the US. We ex-
ploit for that purpose a change in the schedule of the Earned Income Tax Credit (EITC) between 1987
and 1989. We argue that this change generates exactly the crossing condition we require. Applying
our method, we obtain an estimated time trend that displays heterogeneity, underlying the need to go
beyond mere additive time trends. Moreover, our estimates of the marginal effects suggest that low-
income individuals increase substantially their consumption (by around 50%), while medium-income
individuals would not significantly adjust their consumption. This is in line with many findings in the
literature, see e.g., Johnson et al. (2006) and Kaplan and Violante (2014).

The paper is organized as follows. In Section 2, we introduce the model formally, discuss the parameters
of interest and provide our main identification results. The extensions considered above are discussed
in Section 3. Section 4 is devoted to estimation. Section 5 presents the application, and Section 6
concludes. All proofs are gathered in the appendix.

2 Model and Main Identification Results

2.1 Assumptions

We consider a potential outcome framework with a continuous treatment. The potential outcome at
period t, corresponding to a treatment x ∈ X ⊂ R, is denoted by Yt(x), with Yt(x) ∈ R. We observe,
at each period t ∈ {1, ..., T}, the actual treatment Xt and the corresponding outcome, Yt ≡ Yt(Xt).
We are particularly interested in the average and quantile treatment on the treated effects:

∆ATT (x, x′) ≡ E
[
YT (x′)− YT (x)|XT = x

]
,

∆QTT (p, x, x′) ≡ F−1
YT (x′)|XT

(p|x)− F−1
YT (x)|XT

(p|x),

for any x and x′ in the support Supp(XT ) of XT . Here, FA|B(a|b) denotes the conditional cdf of a
random variable A at a, given that a random vector B takes the value b, and F−1

A|B(τ |b) denotes its
inverse, the τ -conditional quantile function. We henceforth focus on the effects at period T, because
they are the most natural to compute in general, but we can identify similar effects at any date.

The main issue in identifying the parameters above is endogeneity of the actual treatment, i.e., Xt may
depend on (Yt(x))x∈X . In such a case, naive estimators do not coincide with the average and quantile

4



treatment effects defined above. For instance, E(YT |XT = x′) − E(YT |XT = x) 6= ∆ATT (x, x′). Our
idea for identifying these causal parameters, then, is to use exogenous changes in Xt (due to, e.g., a
policy change), and apply a difference-in-difference type strategy. To make this idea operational, we
restrict the way time affects both observed and unobserved variables by imposing three main restric-
tions. The first restriction is a stationarity condition on the observed and unobserved determinants
of the outcome. The second restriction limits the way time affects the outcome itself. The third
restriction affects the way the distribution of Xt changes over time. We discuss them in turn using
the notation Vt = FXt(Xt) to denote the rank of an individual in the distribution of the treatment.

Assumption 1 (stationarity of unobservables) For all t ∈ {1, ..., T}, Yt(x) = gt(Ut(x)) where for all
(x, v) ∈ X × [0, 1] the distribution of the unobserved variable Ut(x)|Vt = v does not depend on t.

We can interpret this assumption as follows. First, it defines implicitly groups, similar to control and
treatment groups with binary treatments, through the rank variable Vt. Then, we assume that within
each group, unobserved terms related to potential outcomes have a time-invariant distribution. This
latter condition is similar to Assumptions 3.1 and 3.3 in Athey and Imbens (2006), where the authors
also assume that within both the control and the treatment group the distribution of the unobserved
term related to Yt(0) is constant over time.

Importantly, Assumption 1 does not restrict the cross-sectional dependence between Ut(x) and Vt,
which is at the core of the endogeneity problem we face in this scenario. On the other hand, it
rules out changes in the type of endogeneity, as the distribution of (Ut(x), Vt) is supposed to be
time invariant. In our application below, Xt corresponds to disposable income. The tax rate affects
disposable income, but a change in the tax rate is unlikely to change the ranking of individuals in the
income distribution, holding other characteristics constant (e.g., the number of household members).
In other applications, this condition may be more restrictive. We discuss this point further when we
draw a parallel with instrumental variable models in Section 2.4.2 below.

The following assumption specifies the second requirement mentioned above:

Assumption 2 (rank invariance on the time trend) For all (x, t) ∈ X × {1, ..., T}, Ut(x) ∈ R and gt
is strictly increasing. Without loss of generality, we let gT (y) = y for all y ∈ Supp(YT ).

Assumption 2 is again materially identical to Assumption 3.2 in Athey and Imbens (2006). Combined
with Assumption 1, it states that an individual that has the same unobservable in two different
periods (i.e., Ut(x) ≡ Ut′(x)) will also have the same ranking in the distributions of potential outcomes
Yt(x) and Yt′(x) in the same two periods. Assumption 2 generalizes the standard translation model
gt(u) = δt + u to allow for heterogeneous time trends. This can be important in some applications.
For instance, macroeconomic shocks may have different effects on high- and low-wage earners. Note
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that given the strict monotonicity condition, we can always make the normalization gT (y) = y, by
just redefining Ut(x) as gT (Ut(x)) and gt(y) as gt ◦ g−1

T (y).

Assumption 3 (crossing points) For all t ∈ {1, ..., T − 1}, there exists x∗t ∈ R such that FXt(x∗t ) =
FXT

(x∗t ) ∈ (0, 1).

Contrary to Assumptions 1-2, Assumption 3 only involves observables, and is therefore directly testable
in the data. It means, roughly speaking, that the exogenous change (induced by, e.g., a policy change)
affects individuals’ treatment in a heterogeneous way. Requiring time to have a heterogeneous effect
on the treatment is also required in the usual difference-in-difference strategy, and a similar condition
is required in fuzzy settings considered by de Chaisemartin and D’Haultfœuille (2018).

Note that x∗t can be identified and estimated using the data. We consider such an estimator in Section
4 below. However, sometimes the value of the crossing point may also be inferred from the design of
the policy change. Comparing the theoretical crossing point with the crossing point obtained from
the data then constitutes a check for the hypothesis that the policy change has not changed the
distribution of the unobservables. We refer to the application below for more details about this.

Two additional remarks on Assumption 3 are in order. First, this assumption holds if FXt re-
mains constant with t. In this case, however, we identify only the trivial parameters ∆ATT (x, x) =
∆QTT (p, x, x) = 0. Second, we assume for simplicity crossings between the cdf of XT and all other
cdfs, but actually, T − 1 crossings are sufficient, provided that we can “relate” them to each other,
for instance if the cdf of Xt crosses that of Xt+1 for 1 ≤ t < T . Also, with only one crossing between
FXs and FXt , we still identify some treatment effects at periods s or t, following the same logic as in
Section 2.3 below. So even if Assumption 3 does not make this apparent, adding periods help because
it increases the odds of having at least one crossing point, which is sufficient for identifying some
causal parameters.

The last assumption we impose is a regularity condition:

Assumption 4 (regularity conditions) For all t ∈ {1, ..., T}, E(|Yt|) < ∞ and FXt is continuous on
Supp(Xt), which is an interval included in X . For all x′ ∈ Supp(Xt) and u ∈ Supp(Ut(x′)), there exist
versions of E[Yt|Xt] and PUt(x′)|Vt such that x 7→ E[Yt|Xt = x] and v 7→ FUt(x′)|Vt

(u|v) are continuous.

The continuity conditions are mild, yet important to define properly conditional expectations or cdfs
(e.g., E[Yt|Xt = x∗t ] or FYt|Xt

(y|x∗t )).
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2.2 Examples

To better understand the types of data generating processes which our assumptions permit, we consider
two examples of workhorse models.

2.2.1 Simple Linear Systems

Let us suppose that

Yt(x) = αt + xβ + Ut, (2.1)

Xt = γt + δtηt, (2.2)

where (αt, β, γt, δt) are constants and the marginal distribution of (Ut, ηt) is assumed constant over
time. Suppose also that Supp(ηt) = R and δt 6= δT for all t 6= T . Then, Assumptions 1-3 hold with
Ut(x) = xβ + Ut, gt(u) = αt + u and x∗t = (γt − γT )/(δT − δt). Assumption 4 holds under mild
restrictions on the distribution of (Ut, ηt). Note that the model allows for any dependence between Ut
and ηt. Thus, Xt is endogenous in general in the outcome equation, and we cannot recover β directly
by the OLS. Note, moreover, that we cannot use time as an instrumental variable in the outcome
equation either, because it has a direct effect on Yt, so none of the standard tools work.

As mentioned above, if the policy change has a pure location effect on Xt, so that δt = δT for all t,
then Assumption 3 is not satisfied. We require to have individuals unaffected by the change, and this
holds with a change in scale in (2.2).

Note that we did not impose any condition on the dependence between (Us, ηs) and (Ut, ηt). Hence,
the model allows for any form of serial dependence of the unobservables. On the other hand, models
with a lagged dependent variable are typically ruled out by our assumptions. To see this, suppose
that we replace (2.1) by

Yt(x) = αt + xβ + ρYt−1 + Ut. (2.3)

Then,
Yt(x) = α̃t + βx+ Ũt

with α̃t = α +
∑∞
k=1 ρ

k [αt−k + βγt−k] and Ũt = Ut +
∑∞
k=1 ρ

k[βδt−kηt−k + Ut−k]. Therefore, the
distribution of Ũt depends on t in general, unless ρ = 0. Then,

F−1
Yt(x) ◦ FYt′ (x)(y) = α̃t + βx+ F−1

Ũt
◦ F

Ũt′
(y − α′t′ − βx),

which depends on x in general when β 6= 0 and ρ 6= 0. On the other hand, Assumptions 1-2 imply that
for any (t, t′), F−1

Yt(x) ◦ FYt′ (x)(y) does not depend on x. In other words, Assumptions 1-2 are violated
in general when ρ 6= 0.
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This feature is not specific to our assumptions. A similar issue arises in the standard difference-in-
differences setup. To see this, consider model (2.3) again, but now with a binary treatment, for which
Xt = 0 for all t ≤ 1, and X2 = G, the dummy of being in the treatment group as opposed to the
control group in the second period. Suppose, moreover, that E(Ut|G) does not depend on t. In the
case of ρ = 0, the common trend condition is satisfied with E(Y2(0)|G)−E(Y1(0)|G) = α2 − α1. But
if ρ 6= 0, then the common trends assumptions fails to hold in general, since

E(Y2(0)|G)− E(Y1(0)|G = 0) = α2 − α1 +
∞∑
k=1

ρkα1−k + ρ

1− ρE(U1|G),

which depends on G.

2.2.2 Quantile Regression Type Models

The previous model does not allow for heterogeneous treatment effects or heterogeneous time trends
on potential outcomes. We may, however, analyze models with heterogeneous features as they are
compatible with our assumptions. The following model exemplifies this:

Yt = ft [α(Ut) +Xtβ(Ut)]

Xt = ht(ηt),

where we assume that the marginal distribution of (Ut, ηt) is constant over time, Supp(ηt) = R, and
for all t 6= T , there exists et such that ht(et) = hT (et). We also assume that ft and e 7→ α(e) + xβ(e)
are strictly increasing. In this scenario, Assumptions 1-3 are satisfied, with Ut(x) = fT (xβ(Ut))
and gt(y) = ft ◦ f−1

T (y). Contrary to the previous example, this model allows for both heterogeneous
treatment effects, through the random coefficient β(Ut), and an heterogeneous time trend, through the
function ft. In the special case where ft(y) = y+γt, the model is a linear correlated random coefficients
model. Note that even with such a restriction on ft, the treatment effect function e 7→ β(e) cannot
be identified through standard quantile regression of Yt on Xt, because of the dependence between Xt

and Ut.

2.3 Main Identification Results

Our identification strategy works in two steps: In the first step, we identify the effect of time on the
outcome, i.e., the function gt. This implies that we identify Ỹt = g−1

t (Yt), whose distribution does not
depend on time anymore (conditional on Vt). Then, in a second step, we can use time as an instrument
to recover specific causal effects. For ease of exposition, we first outline our method in the case of
T = 2.
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2.3.1 Step 1: Identification of the Time Trend

To recover g1, we rely on observations at the crossing point, i.e. observations for whom X1 = x∗1.
Under Assumptions 1-4, the following is true:

P (Y2 ≤ y|X2 = x∗1) A.2= P (U2(x∗1) ≤ y|V2 = FX2(x∗1))
A.1= P (U1(x∗1) ≤ y|V1 = FX2(x∗1))
A.3= P (U1(x∗1) ≤ y|V1 = FX1(x∗1))
A.2= P (g1(U1(x∗1)) ≤ g1(y)|X1 = x∗1)

= P (Y1 ≤ g1(y)|X1 = x∗1) , (2.4)

where we indicate the respective assumptions employed by superscripts upon equalities. As a result,
g1 is identified by

g1(y) = F−1
Y1|X1

[
FY2|X2(y|x∗1)|x∗1

]
. (2.5)

Hence, under our assumptions, the time trend g1 can be identified using observations for whichX1 = x∗1

and X2 = x∗1. These two sets of observations, though distinct as we use repeated cross sections, have
the same distribution of unobservables and the same value of the treatment. Therefore, differences
between the distributions of outcomes can only stem from the effect of time itself. This idea is very
similar to that used in difference-in-differences, where the control group permits the identification
of the (common) time trend. For this reason, in what follows we classify all observations satisfying
X1 = x∗1 to form the “control group”.

Note that our model allows for heterogeneous time trends. As Athey and Imbens (2006), we therefore
recover a whole function g1 rather than a single coefficient for the time trend, as in the standard
difference-in-differences model. Also as Athey and Imbens (2006), we identify g1 by a quantile-quantile
transform. When it comes to the identification of the time trend, the main difference between our
approach and that of Athey and Imbens (2006) lies in how the control group is defined. While it is
defined ex ante in Athey and Imbens (2006), it is data-driven and defined through the crossing points
here.

Beyond the identification of g1, (2.5) reveals that the model is testable, if there are several crossing
points between FX1 and FX2 , say x∗1 and x∗∗1 . In such a case, our model implies indeed that for all y,

F−1
Y1|X1

[
FY2|X2(y|x∗1)|x∗1

]
= F−1

Y1|X1

[
FY2|X2(y|x∗∗1 )|x∗∗1

]
,

which is a testable restriction. Related to this, if the true set of crossing points is an interval I, say,
we have FX1|X1∈I = FX2|X2∈I . Then, integrating (2.4) over x∗1 ∈ I, we obtain

P (Y2 ≤ y|X2 ∈ I) = P (Y1 ≤ g1(y)|X1 ∈ I) .
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Therefore, g1(y) = F−1
Y1|X1∈I

[
FY2|X2∈I(y)

]
, which implies that g1 could be in principle estimated at a

parametric rather than nonparametric rate in this case.

2.3.2 Step 2: Identification of ATT and QTT

Next, we consider the identification of the treatment effects ∆ATT (x, x′) and ∆QTT (p, x, x′). Start out
by considering the transformed potential and observed outcomes Ỹt(x) = g−1

t (Yt(x)) and Ỹt = g−1
t (Yt)

for t = 1, 2. By virtue of Assumption 1, F
Ỹ1(x) = F

Ỹ2(x). Time can thus be seen as an instrument for
the treatment: while it affects the treatment (or its distribution, to be precise), it has no direct effect
on potential outcomes. The same idea is used in a different DID framework by de Chaisemartin and
D’Haultfœuille (2018).

To proceed with the identification of our model, let qt = F−1
Xt
◦ FXT

. Thus, qt(x) denotes the value of
Xt (say, income in period t) for an individual at the same rank as another individual whose period T
income is XT = x. Then,

E
[
Ỹ1|X1 = q1(x)

]
= E [U1(q1(x))|V1 = FX2(x)]
A.1= E [U2(q1(x))|V2 = FX2(x)]

= E [U2(q1(x))|X2 = x] .

By the normalization g2(y) = y, the latter is the mean counterfactual outcome at period 2 for individ-
uals with X2 = x if X2 was moved exogenously to q1(x). We can therefore identify ∆ATT (x, q1(x)),
the average effect of moving X2 from their initial value x to q1(x), by

∆ATT (x, q1(x)) A.2= E [U2(q1(x))− U2(x)|X2 = x]

= E
[
Ỹ1|X1 = q1(x)

]
− E

[
Ỹ2|X2 = x

]
.

This means that we can obtain ∆ATT (x, x′) for any pair (x, x′) such that x′ = q1(x).

Similarly, we have, for any p ∈ (0, 1),

F−1
Ỹ1|X1

(p|q1(x)) = F−1
U1(q1(x))|V1

(p|FX2(x))
A.1= F−1

U2(q1(x))|V2
(p|FX2(x))

A.2= F−1
Y2(q1(x))|X2

(p|x).

This implies that
∆QTT (p, x, q1(x)) = F−1

Ỹ1|X1
(p|q1(x))− F−1

Ỹ2|X2
(p|x).

Theorem 1 summarizes our findings so far, and generalizes it to any value of T .
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Theorem 1 Under Assumptions 1-4, we identify, for all x ∈ Supp(XT ), p ∈ (0, 1) and t ∈ {1, ..., T −
1}, the functions gt and the average and quantile treatment effects ∆ATT (x, qt(x)) and ∆QTT (p, x, qt(x)).

Note that if x 7→ YT (x) is differentiable, we have, by the mean value theorem,

YT (qt(x))− YT (x) = Y ′T (X̃)(qt(x)− x),

for some random term X̃ ∈ [x, qt(x)]. As a result, by Theorem 1, we identify

∆AME
app (x) ≡ E[Y ′T (X̃)|XT = x] = ∆ATT (x, qt(x))

qt(x)− x . (2.6)

In other words, ∆ATT (x, qt(x))/(qt(x)− x) may be interpreted as an average marginal effect for units
at XT = x. Contrary to usually, however, the derivative of YT (.) is not evaluated at the current
treatment value x, but at another point X̃ ∈ (x, qt(x)). If qt(x) is close to x or YT is close to being
linear, we can nevertheless expect Y ′T (X̃) to be close to the usual term Y ′T (x). As shown in Appendix
A, we actually exactly identify the usual average marginal effect ∆AME(x) ≡ E[Y ′T (x)|XT = x] at
some particular values of x.

Equation (2.6) also implies that we can identify average marginal effects on larger subpopulation.
Specifically, let Ic = {x ∈ Supp(XT ) : |qt(x)− x| > c} for some c > 0. Then, we identify

E[∆AME
app (XT )|XT ∈ Ic] = E

[
∆ATT (XT , qt(XT ))
qt(XT )−XT

∣∣∣∣XT ∈ Ic

]
.

The advantage of considering this object is statistical accuracy, as we average over the subpopulation
such that XT ∈ Ic.

With T > 2, more periods produce more variations and thus allow one to identify more treatment
effects. Also, while Theorem 1 establishes the identification of treatment effects at period T , the same
reasoning yields the identification of treatment effects at any other periods. To see this, note that

E
[
Yt(q−1

t (x))− Yt(x)|Xt = x
]

= E
[
gt(Ut(q−1

t (x))|Vt = FXt(x)
]
− E [Yt|Xt = x]

= E
[
gt(UT (q−1

t (x))|VT = FXt(x)
]
− E [Yt|Xt = x]

= E
[
gt(YT )|XT = q−1

t (x)
]
− E [Yt|Xt = x] .

The right-hand side is identified, since gt is identified, as outlined above. Hence, we identify all period
t-parameters of the form E

[
Yt(q−1

t (x))− Yt(x)|Xt = x
]
and F−1

Yt(q−1
t (x))|Xt=x − F

−1
Yt(x)|Xt=x.

If FXt does not vary over time, then qt(x) = x and Theorem 1 boils down to the identification of the
trivial parameters ∆ATT (ξ, ξ) = 0 an ∆QTT (ξ, ξ) = 0. As mentioned above, the distribution of Xt
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needs to vary for our method to have non-trivial identification power. Finally, we cannot point identify
from Theorem 1 the parameters ∆ATT (x, x′) and ∆QTT (x, x′) if x′ 6= qt(x) for some t ∈ {1, ..., T − 1}.
We show however in Subsection 3.3 that we can at least set identify these parameters under plausible
curvature restrictions, and in Subsection 3.4 that we can point identify them under stronger conditions.

2.4 Relationship to other Approaches

2.4.1 Comparison with Panel Data Models

While we rely on time variation to identify causal effects, as in panel data, our assumptions contrast
with those typically used in panel data. First, our stationarity condition is different from the condition

Us(x)|X1, ..., XT ∼ Ut(x)|X1, ..., XT , (2.7)

commonly assumed in panel data (see, e.g., Manski, 1987; Honore, 1992; Hoderlein and White, 2012;
Graham and Powell, 2012; Chernozhukov et al., 2013, 2015). To understand the differences between
the two, consider two polar cases. In the first, endogeneity stems from contemporaneous simul-
taneity between Ut(x) and Vt, as is often the case with variables that are jointly determined, while
(Ut(x), Vt)t=1...T are i.i.d. across time. If so, Assumption 1 is satisfied. On the other hand, (2.7)
does not hold, unless Ut(x) is independent of Vt, because the distribution of Us(x) conditional on
(X1, ..., XT ) is a function of Xs only, i.e., fUs(x)|X1,...,XT

(a|x1, ..., xT ) = fUs(x)|Xs
(a|xs), while the con-

ditional distribution Ut(x) is a function of Xt only, and they do not coincide in general if xs 6= xt.
Assuming (Us(x), Vs) independent of (Ut(x), Vt) is of course often unrealistic, but the same conclusion
would hold with, say, a vector autoregressive structure.

In the second case, Ut(x) = (A(x), Ut) where A(x) is an individual effect potentially correlated with
X1, ..., XT and (Ut)Tt=1 are i.i.d. idiosyncratic shocks that are independent of (A(x), X1, ..., XT ). In
this case, the condition (2.7) is always satisfied. On the other hand, Assumption 1 holds only under
a special correlation structure between A(x) and (X1, ..., XT ): A(x)|Vt = v ∼ A(x)|Vs = v, which
for instance imposes Cov(A(x), Vt) = Cov(A(x), Vs), s 6= t. While this still allows for arbitrary
contemporaneous correlation between A(x) and Vt, it does not allow for any time-varying covariance.

Another difference with panel data models lies in the type of variations that we require on Xt. With
panels, we require the individual value of the treatment to vary over time, the fixed effects absorbing
any variable that is constant across time. Such a requirement is not needed here, since the distribution
of Xt can change over time even if Xt is constant for each individual, provided new generations are
involved at date t compared to date s. On the other hand, compared to panel data, we do not identify
anything here, apart from the time trend gt, when the treatment changes at an individual level but
the distribution of Xt remains constant over time. This is one key aspect that distinguishes our
identification strategy from panel data based strategies.
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2.4.2 Comparison with instrumental variable models

Our result is also related to the literature on identification of triangular models with instruments and
cross-sectional data (see in particular Imbens and Newey, 2009). Such models take the following form:

Y = g(X,U),

X = h(Z, V ),

where Z denotes the instrument, V ∈ R h(z, ·) is increasing and (U, V ) ⊥⊥ Z. We rely on a similar
structure here, with Z playing the role of the instrument. Assumption 1 then corresponds to the
condition (U, V ) ⊥⊥ Z. Our model still has one distinctive feature from this model: time may have a
direct effect on the outcome variable, though this effect has to be restricted through Assumption 2.1

The role of the crossing condition, then, is to pin down this effect, so that we can modify the outcome
in such a way that time becomes a valid instrument.

This parallel also illustrates some possible limitations of our approach. In particular, Kasy (2011)
showed that if in reality V is multidimensional (with still (U, V ) ⊥⊥ Z), then in general U is not
independent of Z conditional on FX|Z(X|Z). In our context, this means that Assumption 1 fails to
hold if Xt depends on a multiple unobserved terms. Consider for instance returns to schooling. In
the model of Card (2001), schooling Xt depends on individual marginal cost ct and individual returns
rt through the relationship Xt = (ct − rt)/k for some constant k > 0. Suppose that returns rt are
time invariant but exogenous variations in tuition fees affect marginal costs multiplicatively, so that
ct = αtc̃t and (c̃t, rt) is time invariant. The results of Kasy (2011), and in particular his Section 2,
then imply that Assumption 1 would fail in this example.

3 Extensions

3.1 Including Covariates

We consider here the case where exogenous covariates Zt also affect the outcome variable. Specifically,
let Yt(x, z) denote the potential outcome associated with the values x and z (of random variables Xt

and Zt, respectively). We observe Yt ≡ Yt(Xt, Zt). We still focus on the effect of Xt hereafter. In this
case, the preceding analysis can be conducted conditionally on Zt. We briefly discuss this extension
here, by considering only the discrete average and quantile effects

∆ATT (x, x′, z) ≡ E
[
YT (x′, z)− YT (x, z)|XT = x, ZT = z

]
and

∆QTT (p, x, x′, z) ≡ F−1
YT (x′,z)|XT ,ZT

(p|x, z)− F−1
YT (x,z)|XT ,ZT

(p|x, z).
1 Another difference with Imbens and Newey (2009) is that the instrument is discrete in our setup. As a result, some

common parameters such as the overall average marginal effects are not identified without further restrictions.
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The marginal effects can be handled similarly. We first restate our previous conditions in this context.
The rank variable is now defined conditionally on Zt, i.e., Vt = FXt|Zt

(Xt|Zt).

Assumption 1C Supp((Vt, Zt)) does not depend on t. For all t ∈ {1, ..., T}, Yt(x, z) = gt(z, Ut(x, z))
where for all (x, v, z) ∈ X × Supp((Vt, Zt)), the distribution of Ut(x, z)|Vt = v, Zt = z does not depend
on t.

Assumption 4C For all (t, z) ∈ {1, ..., T} × Supp(Zt), E(|Yt|) < ∞ and FXt|Zt
(.|z) is continuous

and strictly increasing on Supp(Xt|Zt = z). For all (x′, z) ∈ Supp((Xt, Zt)) and u ∈ Supp(Ut(x′, z)),
there exist versions of E[Yt|Xt, Zt] and PUt(x′)|Vt,Zt such that x 7→ E[Yt|Xt = x, Zt = z] and v 7→
FUt(x′)|Vt,Zt

(u|v, z) are continuous.

Next, we consider two versions of Assumptions 2 and 3, namely Assumptions 2C-3C and 2C’-3C’
below. The trade-off between these two versions is basically between the generality of the model
and the requirements on the data. In the first version, we allow for a more general time trend (i.e.,
Assumption 2C’ is a particular case of Assumption 2C). However, the crossing condition in Assumption
3C is more demanding than in Assumption 3C’, because the former requires to observe a crossing point
for each value of z.

Assumption 2C For all (z, t) ∈ Supp(ZT )×{1, ..., T}, Ut(x, z) ∈ R and gt(z, .) is strictly increasing.
Without loss of generality, we let gT (z, y) = y for all (y, z) ∈ Supp((YT , ZT )).

Assumption 3C For all (z, t) ∈ Supp(ZT )×{1, ..., T−1}, there exists x∗t (z) such that FXT |ZT
(x∗t (z)|z) =

FXt|Zt
(x∗t (z)|z) ∈ (0, 1).

Assumption 2C’ For all (t, x, z) ∈ {1, ..., T} × Supp((Xt, Zt)), gt(z, Ut(x, z)) = ht(Ut(x, z)), with
Ut(x, z) ∈ R and ht(.) strictly increasing. Without loss of generality, we let hT (y) = y for all y ∈
Supp(YT ).

Assumption 3C’ For all t ∈ {1, ..., T−1}, there exists (x∗t , z∗t ) such that FXT |ZT
(x∗t |z∗t ) = FXt|Zt

(x∗t |z∗t ) ∈
(0, 1).

Both sets of the assumptions lead to the same results, which are qualitatively very similar to those of
Theorem 1. In what follows, we let qt(x|z) = F−1

Xt|Zt
(FXT |ZT

(x|z)|z). The proof of Theorem 1C is a
straightforward extension of the proof of Theorem 1, and hence is omitted.

Theorem 1C Suppose that Assumptions 1C and 4C and either Assumptions 2C-3C or Assumptions
2C’-3C’ hold. Then, for almost all (x, z) ∈ Supp((XT , ZT )), all p ∈ (0, 1) and all t ∈ {1, ..., T −1}, the
functions gt and the average and quantile treatment effects ∆ATT (x, qt(x|z), z) and ∆QTT (p, x, qt(x|z), z)
are identified.

14



Here again, we can relate ∆ATT (x, qt(x|z), z) with average marginal effects. If YT (., z) is differentiable,
by the mean value theorem,

YT (qt(x|z), z)− YT (x, z) = ∂YT
∂x

(X̃z, z),

for some X̃z ∈ (x, qt(x|z)). Then,

∆AME
app (x, z) ≡ E

[
∂YT
∂x

(X̃z, z)|XT = x, ZT = z

]
= ∆ATT (x, qt(x|z), z)

qt(x|z)− x
.

This equation implies that we can also average over x and z to gain statistical power. Specifically,
let Ic = {(x, z) ∈ Supp((XT , ZT )) : |x − qt(x|z)| > c} for some c > 0. Under the conditions behind
Theorem 1, we can identify

E
[
∆AME

app (XT , ZT )|(XT , ZT ) ∈ Ic
]

= E

[
∆ATT (XT , qt(XT |ZT ), ZT )

qt(XT |ZT )−XT
|(XT , ZT ) ∈ Ic

]
.

3.2 Multivariate Treatment

Our framework directly extends to multivariate treatments, Xt = (X1t, ..., XkT ) ∈ Rk, k ≥ 2, by just
making a few changes. First, we now define Vt to be Vt = (FX1t(X1t), ..., FXkt

(XkT )). Second, we
replace Assumption 3 by the following condition:

Assumption 3M For all (j, t) ∈ {1, ..., k} × {1, ..., T}, there exists x∗jt ∈ R such that FXjt(x∗jt) =
FXjT

(x∗jt) ∈ (0, 1).

Finally, we now define qt as qt(x1, ..., xk) =
(
F−1
X1t
◦ FX1T

(x1), ..., F−1
Xkt
◦ FXkT

(xk)
)
. Then, we obtain

the same point identification result as before.

Theorem 1M Suppose Assumptions 1, 2, 3M and 4 hold. Then, for all (t, x) ∈ {1, ..., T − 1} ×
Supp(XT ), the function gt and ∆ATT (x, qt(x)) and ∆QTT (p, x, qt(x)) are identified.

3.3 Partial Identification of Other Treatment Effects

Theorem 1 implies that we can point identify some but not all average treatment effects ∆ATT (x, x′).
Similarly, we point identify the average marginal effects only at some particular points. We show in this
subsection that with three or more periods of observation, we can get bounds for many other points
under a weak local curvature condition. Let us consider average marginal effects, for instance. The
idea is that if x 7→ UT (x) is locally concave (say) and qt(x) < x, then [UT (qt(x))−UT (x)]/[qt(x)−x] is
an upper bound for dUT /dx(x) = dYT /dx(x). By integration, ∆ATT (x, qt(x))/(qt(x)− x) is therefore
an upper bound for ∆AME(x). Similarly, we obtain a lower bound for ∆AME(x) if qt(x) > x. Figure
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Figure 1: Bounds under the local curvature condition
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illustrates this idea with T = 3 and q2(x) < x < q1(x). Note the same idea can be used to obtain
bounds ∆ATT (x, x′) for x′ 6∈ {qt(x), t = 2, ..., T}.
The above argument works even if we do not know a priori whether UT (.) is concave or convex. Using
the minimum and the maximum of the local discrete treatment effect will be sufficient to obtain
bounds, provided that UT (.) is locally concave or locally convex around x. We therefore adopt the
following definition.

Definition 1 x 7→ UT (x) is locally concave or convex on [x̃, x̃′] if, almost surely (a.s.), it is twice
differentiable and

∂2UT
∂x2 (x) ≤ 0 ∀x ∈ [x̃, x̃′] a.s. or ∂2UT

∂x2 (x) ≥ 0 ∀x ∈ [x̃, x̃′] a.s.

Let us introduce, for all (x, x′) ∈ Supp(XT ), (xT (x′), xT (x′)) defined by

xT (x′) = max{qt(x), t ∈ {1, ..., T − 1} : qt(x) 6= x and qt(x) < x′},

xT (x′) = min{qt(x), t ∈ {1, ..., T − 1} : qt(x) 6= x and qt(x) > x′}.

If the sets are empty, we let xT (x′) = −∞ and xT (x′) = +∞.

Theorem 3 Suppose that Assumptions 1-3 aresatisfied. For any x < x′, if UT is locally concave or
convex on [min(x, xT (x′)), xT (x′)], then

(x′ − x) min
{

∆ATT (x, xT (x′))
xT (x′)− x ,

∆ATT (x, xT (x′))
xT (x′)− x

}
≤ ∆ATT (x, x′)

≤(x′ − x) max
{

∆ATT (x, xT (x′))
xT (x′)− x ,

∆ATT (x, xT (x′))
xT (x′)− x

}
.

If UT is locally concave or convex on [xT (x), xT (x)], then

min
{

∆ATT (x, xT (x))
xT (x)− x ,

∆ATT (x, xT (x))
xT (x)− x

}
≤ ∆AME(x)

≤max
{

∆ATT (x, xT (x))
xT (x)− x ,

∆ATT (x, xT (x))
xT (x)− x

}
.

The bounds are understood to be infinite when either xT (x′) = −∞ or xT (x′) = +∞ (whether x′ > x

or x′ = x).

Both bounds are finite, provided that there exists t, t′ such that qt(x) < x < qt′(x), which implies
that T ≥ 3. More generally, the bounds improve with T , because (xT (x′))T∈N and (xT (x′))T∈N are by
construction increasing and decreasing, respectively. Also, the local curvature condition becomes less
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restrictive as T increases, because the interval on which UT has to satisfy this condition decreases.
This condition is particularly credible if qt(x) 7→ ∆(x, qt(x))/(qt(x)− x) is monotonic, because such a
pattern is implied by global concavity or global convexity.

Two other remarks on Theorem 3 are in order. First, we do not establish that the bounds are sharp,
though we conjecture that they are. Second, similar to the point identification results of Theorem 1,
the partial identification results of Theorem 3 can be extended to the multivariate setting. Specifically,
we can use the system of inequalities

UT (qt(x))− Ut(x) ≥ ∂UT (x)
∂x

′
(qt(x)− x),

which hold for all t = 1...T−1 if UT is locally convex (inequalities are reverted if UT is locally concave).
These inequalities imply some bounds on E[∂UT (x)/∂x]. A necessary condition for the bounds to be
finite on each component of E[∂UT (x)/∂x] is that T − 1 ≥ 2 dim(Xt). This condition generalizes
the above restriction T ≥ 3. It makes intuitive sense that more time periods are required when the
endogenous treatment is multivariate.

To illustrate Theorem 3, we consider the following example:

Yt = 1− exp(−0.5(δt +Xt + Ut))

Xt = µt + σtΦ−1(Vt),

where Vt ∼ U [0, 1] and Ut|Vt ∼ N (Vt, 1). We also suppose that

µT = 2.5, µt ∼ N (µT , 1) for t < T,

σT = 1, σt ∼ χ2(1) for t < T,

δT = 0, δt ∼ N (0, 1) for t < T.

In this example, Assumptions 1, 2 (with gt(y) = 1− exp(−0.5δt)(1− y)) and 3 are satisfied, the latter
because σt 6= σT almost surely. The local curvature condition also holds, since u 7→ 1 − exp(−0.5u)
is concave. Figure 2 displays the bounds on ∆AME

1 (x) for T = 3, 4, 5 and 6. Note that the bounds
coincide for T −1 points. This simply reflects the point identification result of Theorem 6. We also see
that in the interval where we get finite bounds, i.e., the interval for which −∞ < xT (x) < xT (x) <∞,
the bounds are quite informative even for T = 3. Figure 2 also shows that as T increases, both the
bounds shrink and the interval on which we get finite bounds increase. For T = 6, we get informative
bounds for x ∈ [1, 3.85], which corresponds roughly to 85% of the population. This means that
we could also obtain finite bounds for the average partial effect for this large fraction of the total
population.
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T = 3

T = 4

T = 5

T = 6

Figure 2: Example of bounds on ∆AME(x) for different values of x and T = 3, 4, 5 and 6.
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3.4 Point Identification with a Correlated Random Coefficient Model

As we have established in Theorem 1, we can point identify several treatment effect parameters under
Assumptions 1-3, but these are by no means all possible causal effects one may be interested in.
Many more treatment parameters can be set identified under often plausible curvature restrictions,
in particular average marginal effects and effects of the kind ∆ATT (x, x′). However, these bounds
may be wide in some applications, conducting inference on the corresponding parameters may be
cumbersome or even impractical. Hence it makes sense to search for additional assumptions that yield
point identification of average structural effects over the entire population.

We suggest here a possible route for extrapolation, based on a random coefficient linear model of the
form:

Yt(x) = δt + U0t + xU1t. (3.1)

Therefore, we impose a linear structure on gt (gt(u) = δt + u and Ut(x) (Ut(x) = U0t + xU1t). The
model still allows for a rich, non-scalar heterogeneity pattern through the two unobserved terms U0t

and U1t. Under this structure, we have, for any (x, x′) ∈ Supp(XT )2, x 6= x′,

∆ATT (x, qt(x))
qt(x)− x = E [U1T |XT = x] = ∆AME(x) = ∆ATT (x, x′)

x′ − x
. (3.2)

By Theorem 1, ∆ATT (x, qt(x)) is point identified under Assumptions 1-4. This implies that ∆AME(x)
and ∆ATT (x, x′) are identified as well, whenever qt(x) 6= x. As a result, the average marginal effect
over the whole population, ∆AME = E

[
∆AME(XT )

]
, is also point identified if qt(XT ) 6= XT almost

surely. We summarize this finding in the following theorem.

Theorem 4 Under Assumptions 1-4 and Equation (3.1), for all t < T and (x, x′) ∈ Supp(XT )2,
qt(x) 6= x, (δt)t<T , ∆ATT (x, x′) and ∆AME(x) are identified. If qt(XT ) 6= XT almost surely, ∆AME is
point identified as well.

Several remarks on this result are in order. First, we recover the same parameter as Graham and
Powell (2012), who also consider a random coefficient linear model similar to (3.1). They obtain
identification with panel data, relying on first-differencing. Compared to them, we rely on variations
in the cdf of Xt rather than on individual variations. We rely on a different, non-nested, restriction on
the distribution of the error term. In particular, for the same individual, U1t−U1s could be correlated
with Xt in our framework.

Second, Theorem 4 readily extends to a multivariate treatment, by just replacing the condition qt(x) 6=
x by a rank condition. Specifically, let, as in Section 3.2, qt(x) = (q1t(x1), ..., qkt(xk))′ and define the
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matrix Q(x) by

Q(x) =


(q1(x)− x)′

...
(qT−1(x)− x)′

 .
Then ∆AME(x) and ∆ATT (x, x′) are identified if Q(x) is full column rank. Note that the rank
condition implies that T − 1 ≥ k. It also implies that the distribution of Xt differs at each date, so
that qs(x) 6= qt(x). It makes sense that with several endogenous variables, more time variation on Xt

is needed to identify causal effects.

Third, coming back to the univariate case, Theorem 4 ensures that all parameters of interest are
identified with only two time periods. This suggests that the model can be either tested or enriched
when T > 2. To see why the linearity assumption is testable when T > 2, note that Equation (3.2)
implies

∆ATT (x, qs(x))
qs(x)− x = ∆ATT (x, qt(x))

qt(x)− x ∀s 6= t,

which can be checked in the data. With more than two time periods, we can also identify treatment
effects in the more general random coefficient polynomial model of order T − 1:

Yt = δt + U0t + U1tXt + ...+ UT−1tX
T−1
t . (3.3)

With the same arguments as above, we recover not only average marginal effect, but actuallyE(Ukt|Xt =
x) for all k = 1, ..., T and all x such that (x, q1(x), ..., qT−1(x)) are all distinct. Identification of a model
similar to (3.3) was studied before by Florens et al. (2008), with cross-sectional data and under as-
sumptions that typically rule out discrete instruments (see also Heckman and Vytlacil, 1998, for a
study of the identification of Model (3.1) with instruments). Here, we rely only on a finite number
of time periods, which would be equivalent to a discrete instrument, and allow for time trend, which
would correspond to a direct effect of the instrument in Florens et al. (2008).

Alternatively, we can use additional periods to identify higher moments of the distribution of the
coefficients in the linear model (3.1). For instance, with k = 1, V (U01|XT = x), V (U1T |XT = x) and
Cov(U01, U1T |XT = x) can be shown to be identified with T = 3 as soon as x, q1(x) and q2(x) are
distinct.

4 Estimation of Average and Quantile Treatment Effects

We consider in this section estimators of the parameters ∆ATT (x, qt(x)) and ∆QTT (p, x, qt(x)) that
are shown to be identified in Theorem 1. We suppose for that purpose to observe two independent
samples corresponding to the periods 1 and T = 2. For simplicity, we suppose hereafter that the two
corresponding sample sizes are identical.
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Assumption 5 We observe the two independent samples (Yi1, Xi1)i=1...n and (Yi2, Xi2)i=1...n, which
are both i.i.d. random variables drawn from the distributions FY1,X1 and FY2,X2, respectively.

Our estimator follows closely our identification strategy. Let us define

Ψn(x) = F̂X2(x)− F̂X1(x),

where F̂X2 (resp. F̂X1 ) denotes the empirical cdf of X2 (resp. X1). We first estimate x∗1 by

x̂∗1 = min
{
x ∈

[
F̂−1
X1

(p), F̂−1
X1

(p)
]

: |Ψn(x)| ≤ |Ψn(x′)| ∀x′ ∈
[
F̂−1
X1

(p), F̂−1
X1

(p)
]}
, (4.1)

where F̂−1
X1

denotes the empirical quantile function and 0 < p < p < 1 are two given constants used to
avoid reaching the boundaries of the support of X1. Note that the minimum in (4.1) is well defined
because Ψn is a right-continuous step function.

Next, we estimate q1(x) = F−1
X1
◦ FX2(x) by its empirical counterpart q̂1(x) = F̂−1

X1
◦ F̂X2(x). We then

estimate g1 using an empirical counterpart of (2.5). For that purpose, we estimate the conditional cdf
FYt|Xt

, for t ∈ {1, 2}, by

F̂Yt|Xt
(y|x) =

∑n
i=1 1{Yit ≤ y}K

(
x−Xit
hn

)
∑n
i=1K

(
x−Xit
hn

) ,

where K is a kernel function and hn denotes the bandwidth. We then let F̂−1
Yt|Xt

(.|x) denote the
generalized inverse of F̂Yt|Xt

(.|x). We estimate g1 by

ĝ1(y) = F̂−1
Y1|X1

[
F̂Y2|X2(y|x̂∗1)|x̂∗1

]
.

Now, let us recall that ∆ATT (x, q1(x)) and ∆QTT (p, x, q1(x)) satisfy, under Assumptions 1-3,

∆ATT (x, q1(x)) = E[g1(Y1)|X1 = q1(x)]− E[Y2|X2 = x],

∆QTT (p, x, q1(x)) = F−1
g1(Y1)|X1

(p|q1(x))− F−1
Y2|X2

(p|x).

We then estimate these two parameters by

∆̂ATT (x, q1(x)) =
∑n
i=1 ĝ

−1
1 (Yi1)K

(
x−Xi1
hn

)
∑n
i=1K

(
x−Xi1
hn

) −
∑n
i=1 Yi2K

(
x−Xi2
hn

)
∑n
i=1K

(
x−Xi2
hn

) and

∆̂QTT (p, x, q1(x)) = F̂−1
ĝ1(Y1)|X1

(p|q̂1(x))− F̂−1
Y2|X2

(p|x).

For notational simplicity, we chose here the same kernels and bandwidths for each nonparametric
terms, though we could obviously consider different ones. We establish below that ∆̂ATT (x, q1(x))
and ∆̂QTT (p, x, q1(x)) are consistent and asymptotically normal. Our result is based on the following
conditions.
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Assumption 6 (Conditions for the root-n consistency of x̂∗1 and q̂1(x))
(i) There exists a unique x∗1 satisfying FX1(x∗1) = FX2(x∗1) ∈ (0, 1). Moreover, FX1(x∗1) ∈ (p, p).
(ii) For t ∈ {1, 2}, Xt admits a continuous density fXt satisfying, for all x in the interior of X ,
fXt(x) > 0. Moreover, fX1(x∗1) 6= fX2(x∗1).

Assumption 7 (Regularity conditions on (Xt, Yt))
(i) For t ∈ {1, 2}, Supp(Xt, Yt) = X × Y with Y = [y, y] with −∞ < y < y < +∞.
(ii) For (t, x) ∈ {1, 2} × X , FYt|Xt

(.|.) is continuously differentiable and infy∈Y fYt|Xt
(y|x) > 0.

(iii) For all (t, y) ∈ {1, 2} × Y, FYt|Xt
(y|.) and fXt are twice differentiable. fXt, |f ′Xt

| and |f ′′Xt
| are

bounded. sup(y,x)∈Y×X |∂xFYt|Xt
(y|x)| <∞ and sup(y,x)∈Y×X |∂xxFYt|Xt

(y|x)| <∞.

Assumption 8 (Conditions on the kernels and bandwidths)
(i) nh3

n/| log(hn)| → +∞, nh5
n → 0.

(ii) K has a compact support, is differentiable with K ′ of bounded variation and satisfies K(y) ≥ 0
for all y. Besides,

∫
K(y)dy = 1 and

∫
yK(y)dy = 0.

Assumption 6-(i) strengthens Assumption 3 by assuming the uniqueness of the crossing point. We
make this assumption for the sake of simplicity. We could also consider the case where the set
of crossing points is an interval. As discussed in Section 2.3.1 above, we would actually expect a
parametric rather than a nonparametric rate of convergence for ĝ1, so Theorem 5 below should still
hold in this more favorable case. Assumption 6-(ii) is a mild regularity condition on FX2 and FX1 .
As Lemmas 2 and 4 in Appendix A show, these two restrictions ensure that x̂∗1 and q̂1(x) are root-n
consistent. Assumption 7 provides a set of conditions ensuring that ĝ1 is consistent and asymptotically
normal. Conditions (i) and (ii) are also made by Athey and Imbens (2006), without any Xt in their
case, in another context where quantile-quantile transforms must be estimated. Condition (iii) is
required as well here because we deal with nonparametric estimators of conditional cdfs rather than
usual empirical cdfs, as Athey and Imbens (2006) do. Finally, Assumption 8 is a standard condition
on the bandwidths and the kernels appearing in the nonparametric estimators. We impose nh5

n → 0
in order to avoid any asymptotic bias on ∆̂ATT (x, q1(x)) and ∆̂QTT (p, x, q1(x)).

Theorem 5 Suppose that Assumptions 1-4 and 5-8 are satisfied. Then, for any x ∈ X such that FX1

is differentiable at q1(x) with F ′X1
(q1(x)) > 0,√

nhn
(
∆̂ATT (x, q1(x))−∆ATT (x, q1(x))

)
d−→ N (0, V1)√

nhn
(
∆̂QTT (p, x, q1(x))−∆QTT (p, x, q1(x))

)
d−→ N (0, V2),

for some V1, V2.

We do not display the asymptotic variances here, as they involve many terms due to the multiple
compositions of nonparametric estimators – see Appendix B.3 for details as well as a proof. In
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practice, we suggest to rely on bootstrap, as we do in the application below. We conjecture that
the bootstrap is consistent in our setting, though a formal proof of its validity is beyond the scope
of this paper. The main issue for establishing its validity would be to prove the (conditional) weak
convergence of the process

G∗nxt =
√
nhn

(
F̂ ∗Yt|Xt

(.|x)− F̂Yt|Xt
(.|x)

)
, t ∈ {1, 2},

where F̂ ∗Yt|Xt
is the bootstrap counterpart of F̂Yt|Xt

. Up to our knowledge, such a result is not available
in the literature yet.

5 Application to the Marginal Propensity to Consume

In this section we provide an application to a substantive economic question: The magnitude of the
marginal propensity to consume out of current disposable income. When analyzing this question, we
focus in particular on how results obtained through our approach compare to those obtained in the
literature. In order to facilitate this comparison, we first briefly review the literature on this question,
before explaining the policy experiment we are using, and detailing the data. We then outline how
our methodology is employed, and finally close by comparing our results with those in the literature.

5.1 The Economic Question

A crucial question for the classical theory of consumption is the marginal propensity to consume
(MPC) out of income. Given its implications for the business cycle, taxes, and government policy,
the importance of the MPC can hardly be overstated, and thus this quantity was, and still is, at the
center of a very active debate (see, e.g., Jappelli and Pistaferri, 2010, for an overview). An upshot
of the rational expectations revolution which, since the seminal paper of Hall (1978), tried to answer
questions about the effect of a marginal change in income on consumption, is that expectations about
the change matter.

In the absence of liquidity constraints (and precautionary saving motives at very low income levels),
the following is the key insight in the literature about the effect of a marginal income change on the
nondurable consumption of a rational consumer, see, e.g., Deaton (1992): If the income change is
anticipated, i.e., not related to new information, then consumption does not respond to the income
change. For an income change that is not anticipated, if the change is viewed as transitory, then the
rational consumer is predicted to use very little of the income increase immediately, as the transitory
change in income is distributed over the life-cycle, and its small quantity (relative to life-cycle income)
does not alter fundamentally the trade-off between consumption today and saving for the future.
Conversely, if the income change is expected to be permanent, the individual is expected to essentially
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increase her consumption by the amount of the change. This means that we only observe a substantial
change in consumption in response to an income change, if the change is surprising and considered to
be permanent.

The empirical evidence on the hypothesis of a rational consumer is rather mixed, and has spurned an
active debate. Perhaps the most problematic evidence comes from studies involving one time transfers,
see e.g., Johnson et al. (2006) and Parker et al. (2013, PSJM). In these studies, consumers are given
what is clearly an expected and transitory income shock (PSJM actually documenting aspects of the
Obama era stimulus package), yet the effect on consumption is not zero. Instead, typical estimates
for the marginal effects of an anticipated income change range between 15% and 25%.

There are a number of counterarguments in defense of the rational consumer. First, consumers could
be credit constrained. PSJM find indeed lower responses for older and high-income households, who
are less likely to be constrained. Second, consumers may exhibit a form of bounded rationality. There
are significant costs associated with computing the optimal consumption path. If an income change is
small relative to the level of income, the benefits from adapting the optimal path in light of the changes
are small relatively to the costs associated with it, and individuals simply avoid optimizing completely,
as they would in the case of a large income change. Evidence that individuals indeed smooth large
anticipated income changes is provided by Browning and Collado (2001) and Hsieh (2003), among
others. Another counterargument is that some of the changes considered in the literature are not just
small, but also outside the “usual” consumer experience. As such, they are not representative of the
typical real-world surprise income shocks individuals deal with (a distinction that is reminiscent to
the question of whether individuals are able to assign probabilities to these events).

In this section, we use our econometric method in conjunction with an experiment involving the
Earned Income Tax Credit (EITC) to analyze the causal effect of increase in income on consumption
for households in 1987. We believe that this natural experiment is very insightful for the above debate.
While it provides exactly the type of variation we require for our method, it provides (at least for a
good number of households) a significant and anticipated change in their income. Finally, the fact
that our procedure allows for nonlinearities, i.e., for the marginal effect to vary with income, is going
to be crucial to shed light on the question of the existence of liquidity constraints.

5.2 Policy Background: The EITC

In the following, we provide more background on the policy experiment that provides the exogenous
variation: The Earned Income Tax Credit (EITC) is an income support program which started in
1975 in the United States for the purpose of mitigating poverty. The EITC provision schedule varies
from year to year, exhibiting interesting non-linearities. This feature of the program has been used
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for economic analysis before, e.g., by Dahl and Lochner (2012), and a detailed documentation of the
EITC can be found in Falk (2014). In most of the past years, the change to the EITC schedule has
been monotone to match increasing price levels. However, the change in the schedules between 1987
and 1989 exhibits a specific pattern which, as we will now demonstrate, generates a crossing of the
cdfs of (deflated) total income in the respective years.

Figure 3 displays the EITC schedules in 1987 (solid line) and 1989 (dotted line) in terms of thousands
of Year 2000 US dollars for families with two or more children. Note that for individuals with income
between 9K USD and 10.75K USD, the 1987 EITC provision was higher than the provision in 1989,
whereas the reverse is true for individuals with income above 10.75K USD. This is exactly the type
of variation which generates a crossing, if everything else is held constant.
To see this more precisely, consider the left graph in Figure 4. The graph shows total income, obtained
as the sum of the pre-aid income and the EITC amount, for each of the years 1987 (solid line) and
1989 (dotted line) plotted against that of year 1989, i.e., the solid line is the 45-degree line. The right
graph in the same figure (Fig. 4) focuses on this difference. As these figures suggest, we expect a
crossing at 12K USD, computed as the sum of 10.75K USD (the cut-off for the change in the schedule)

Notes: amount of the EITC in 1987 (solid line) and 1989 (dotted line), for families with two or more children.

Figure 3: EITC schedules in 1987 and 1989

26



and 1.25K USD for the corresponding EITC amount, provided that total pre-EITC income does not
change substantially. Note that these figures are solely derived from the known policy schedules, but
we will confirm our expectation with real data below. Before we detail this, however, we first give an
overview of the data.

5.3 Data: The CEX

For our analysis, we use repeated cross-sectional data from the Consumer Expenditure Survey (CEX)
for the calendar years 1987 and 1989. The treatment variable is, more precisely, total disposable family
income measured in thousands of Year 2000 US dollars. The outcome (dependent) variable is non-
durable household consumption, defined as the sum of expenditures for food at home, apparel, health,
entertainment, personal care, and readings, measured in thousands of Year 2000 US dollars. Since the
policy described above applies only to families with two or more children, we use the sub-sample of
individuals with two or more children. Table 1 shows summary statistics for our sub-sample.

Note that after controlling for inflation (i.e., in year 2000 prices), the mean of total family disposable
income does not change substantially between 1987 and 1989 (roughly 2%). Indeed, this modest

Notes: left panel: total income, obtained as the sum of the pre-aid income and the EITC amount, for 1987 and

1989 plotted against that of 1989. Right panel: the change in the total income, obtained as the sum of the pre-aid

income and the EITC amount, between 1987 and 1989.

Figure 4: Theoretical change in total disposable income between 1987 and 1989 due to EITC change.
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increase from 1987 to 1989 is quite consistent with the EITC policy change and an otherwise pretty
stationary environment, strengthening the case that we should expect to have the type of variation in
cdfs our method requires2.

Turning to our nondurable consumption measure, we first notice that it only captures a little less than
half of disposable income. Within the subsample that we focus on, the average ratio of nondurable
consumption to total disposable income (which is different than the ratio of averages) is around 50%.
This may be due to the fact that the large category of rent and mortgage payments are excluded
as are large and durable and nondurable consumption items (e.g., TVs, cars, phones). However, we
also suspect a certain modest degree of underreporting in the data. Like in the standard Diff-in-Diff
approach, our analysis would be invalidated if the evolution of this underreporting is systematically
different between treatment and control group. We believe this to be unlikely and certainly have no
evidence of this difference in effects. Moreover, since the overall degree of underreporting seems to be
tolerable as well (e.g., food and clothing account for a budget share of 50% in the British FES as well,
see Hoderlein (2011)), we hence proceed with our analysis.

2As a caveat, we remark that not all families take up the aid even if eligible, and that only a part of the population of
families is eligible, which together accounts for the modest 2% increase in mean total family income from 1987 to 1989.

Thousands of present year USD Thousands of Year 2000 USD
Whole Sample 1987 1989 1987 1989
Total Family Income 27.973 31.162 42.402 43.275

(20.944) (23.438) (31.747) (32.548)
CEX Nondurable Consumption 9.072 10.787 13.752 14.980

(6.187) (8.872) (9.378) (12.320)
Number of Observations 4,827 4,120 4,827 4,120

Subsample: Total Disposable Thousands of present year USD Thousands of Year 2000 USD
Family Income ∈ [15.2, 23.4] 1987 1989 1987 1989
CEX Nondurable Consumption 6.132 7.426 9.296 10.312

(3.606) (5.655) (5.467) 7.854
Consumption/Income Ratio 0.491 0.536 0.491 0.536

(0.289) (0.386) (0.289) (0.386)
Number of Observations 559 442 559 442

Notes: CEX data restricted to famiies with two or more children for 1987 and 1989. The standard deviations are
indicated in parentheses.

Table 1: Relevant Summary Statistics of the CEX Data
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One thing that stands out is that the nondurable consumption measure increased more than propor-
tionally to the change in disposable income in both the sample we focus on (average share increase
from 49.1% to 53.6%), but also in the population at large. This may be due to changes in economic
outlook and general optimism in 1989 at the end of the cold war. Because of this observation, we
definitely want to include a time trend gt in the empirical analysis, as our method warrants. In-
deed, our model identifies an increase in nondurable consumption in particular at higher levels of the
consumption distribution even if our policy experiment would not have taken place.

5.4 Analysis and Results

First, we use our data to confirm that the policy change in the EITC described above indeed induces
a crossing in the cdfs. In particular, we want to study whether there is a divergence from 12.0 K
to 26.8 K USD of cdfs of total family income between 1987 and 1989. The left panel of Figure
6 displays the two empirical cdfs. The solid vertical lines indicate the limit points of the range
inside which the policy change matters; these lines correspond to those displayed in Figure 4. To
check that the distributions of income are in line with this policy change, we made one-sided test of
F1(x) ≤ F2(x) for all x ∈ [12.0K, 26.8K]. We find that at the 5% level, F1(x) > F2(x) for at least some

Notes: CEX data restricted to families with two or more children. Family income is given in thousands of 2000 US

dollars.

Figure 5: Conditional quartiles of Yt (CEX nondurable consumption) given Xt (total family income)
in 1987 and 1989
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x ∈ [12.0K, 26.8K]. We take this as strong evidence that the change in the EITC was, at least for
this subpopulation of households, the main driving force in the change of the empirical cdfs between
the two years. Moreover, the direction of the crossing is what we expect from the design of the policy
change: the families falling within the range where we expect an increase in total disposable income
due to the change in EITC experience a positive change in total family income between 1987 to 1989.

Using these two empirical cdfs, we next compute the empirical quantile-quantile plot of the total family
income from 1987 to 1989 in terms of Year 2000 US dollars. The right panel of Figure 6 displays the
plot. Observe how well this data-based figure resembles Figure 4, which is constructed using the
policy formulas. This provides further evidence that the data follows our research design, and that
there are no other major unaccounted sources of change in disposable income. Recall, moreover, that
this quantile-quantile plot, which is mathematically represented by q1 in our framework, is the main
building block for our identification results.

After having confirmed that the change in the distribution of the treatment is in line with our modeling

Notes: CEX data restricted to families with two or more children. Family income is given in thousands of 2000 US

dollars. In the left panel, the black (resp. grey) curve corresponds to family income in 1987 (resp. 1989). In the

right panel, we display the Q-Q plot, i.e. q1 against the identity function. The solid lines indicate the theoretical

limits inside which we should observe a divergence of the cdfs, given the policy design. The dotted lines are the

limits of the interval on which the efffect of the policy is supposed to be maximal (see the right panel of Figure 4).

Figure 6: Cdf’s and Q-Q plot of total family income in 1987 and 1989
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assumption and largely driven by the policy change, we proceed to use our framework and estimate the
time trend g1(.). In line with the theoretical design, Figure 6 shows that we have more than a single
point x∗ as a control group. We can use the whole set S = [10K; 12K]∪ [26, 8K; 50K], where the two
cdfs overlay. This results in more precise estimates of g1(.) and marginal effects, because we can use the
whole set S instead of a single point x∗. Specifically, we can use g1(y) = F−1

Y1|X1∈S

[
FY2|X2∈S(y)

]
instead

of g1(y) = F−1
Y1|X1

[
FY2|X2(y|x∗)|x∗

]
. Figure 7 displays the estimate of g−1

1 , which corresponds to the
(heterogeneous) time trend between 1987 and 1989. As mentioned before, we observe an increase in
the upper tail of the distribution of nondurable consumption, corresponding with an improved overall
economic outlook, in particular for middle and upper class households.
To come to the main purpose of this application, we estimate average marginal effects of the total family

Notes: CEX data restricted to families with two or more children. Curves are kernel-smoothed. CEX

nondurable consumptions are in thousands of year 2000 US dollars.

Figure 7: Estimate of the time trend function g−1
1 from 1987 to 1989.

31



income in 1987 in terms of Year 2000 US dollars on various expenditures in terms of Year 2000 US
dollars. Specifically, we estimate ∆AME

app (x) = ∆ATT (x, q1(x))/(q1(x) − x) instead of ∆ATT (x, q1(x)).
The former quantity has the advantage over the latter of being interpretable as an average marginal
effect. By the mean value theorem (and under mild regularity conditions), indeed, ∆AME

app (x) =
E
[
dY2/dx(X̃)|X2 = x

]
, for some random X̃ ∈ [q1(x), x]. To the extent that q1(x) is close to x, we

then interpret ∆AME
app (x) as the average marginal effect at X2 = x. Note, on the other hand, that

by dividing by q̂1(x) − x, the estimator of ∆AME
app (x) is more volatile than that of ∆ATT (x, q1(x)),

especially when q1(x) − x is close to zero. To obtain more precise estimates, we rely hereafter on a
piecewise linear estimator of q1(x) − x. Such a constrained estimator is consistent with the policy
design and fits well the data. We refer to Appendix C for more details on its construction.

Figure 8 presents the estimated average marginal effects. The estimates are displayed on the interval
[15.2, 23.8], namely the interval on which the EITC policy change is supposed to be pronounced.
We focus on this region because elsewhere the denominator of ∆AME

app (x) is either close or equal to
zero. The solid line represents the point estimate of the average marginal effect. Specifically, the
line shows how much out of one dollar increase is spent on our nondurable consumption bundle. Our
results are very much in line with the literature, with values ranging from 0.5 for disposable income
just below $16K to virtually zero for incomes above $22K. Our point estimate also suggests that the
average marginal effect decreases with income. This is in line with previous findings in the literature,
in particular those of PSJM. Such a pattern is also consistent with rational consumers facing credit
constraints. Indeed, credit constraints are likely to be less severe for households with higher income,
as such consumers are on average more able to use parts of their wealth as collateral to get new credits
more easily.

Several remarks are in order. The first concerns significance: While the results for low levels of
disposable income are borderline pointwise significant at the 90% level, most of the estimated effect
is insignificant (as are results based on 95% significance). This is in particular regrettable at income
levels around $ 18K where there is probably a substantive nonzero effect, but the evidence is slightly
too weak to conclude this with statistical certainty. As already outlined above, there is significant noise
in the data that complicates our analysis and the instrumental variation used to identify the model
is only moderately strong. Having said that, given the borderline significance at lower income levels,
we are confident that if we were to consider an estimator for the average marginal effect across the
region between $16K and $19K we would find a strongly significant effect, because average derivatives
are much more accurately estimable than pointwise derivatives. Developing such a formal test is quite
involved and thus left for future research. Note that the monotonically declining shape is very much
in line with the literature which finds the strongest evidence for the failure of intertemporal smoothing
at lower income. While certainly not as precise as we had hoped for, we feel that our estimates lend
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Notes: CEX data restricted to families with two or more children. Curves are kernel-smoothed. Income

and consumption are in thousands of 2000 USD. The vertical lines indicate the limits of the region with cdf

divergence.

Figure 8: Average marginal effects of total family income on CEX nondurable consumption
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support to the recently found evidence of excessively large effects of an anticipated shock to income.

The second remark concerns our modeling assumptions. As mentioned above, the stationarity assump-
tion Assumption 1 together with the modeling assumption limits the degree of unobserved heterogene-
ity. In particular, individual households might have heterogeneous preferences both for consumption
and leisure that enter in a complicated fashion resulting in a multivariate At. While we acknowledge
the possibility of these effects biasing our results, we do not think that they are large in absolute
size. Labor supply of the main breadwinner, especially in families in the 1980s, has proven to be very
inelastic to the degree that wages are frequently used as an instrument in consumer demand studies,
see Blundell et al. (1993). This is less true for secondary income (e.g., part time work by the spouse).
However, given the relatively small magnitude of the change, we would be surprised if the effect on
labor supply be large (which would be the main channel for misspecification impacting our estimates).
Still, we do acknowledge that a cautionary remark is in order at this point, also with respect to our
omission of potentially complex dynamics as would arise, e.g., with habit formation.

The third remark concerns our omission of observable heterogeneity.While clearly important, as the
paper does not develop the associated theory we leave this for future research. Having said, note that
we work with the subsample of families with two or more children with at least (and typically in 1987
also at most) one bread winner of a low income level which is a fairly homogeneous population. A
similar stratification strategy to deal with observed heterogeneity is very common in the consumer
demand literature (see Hoderlein, 2011, for a discussion).

The last remark concerns the magnitude of the effect. Here, it is instructive to compare the marginal
effect with the average expenditure share of our nondurable consumption measure. This share is
roughly equal to 0.5 for the levels of income we consider.3 Similarly, our results imply that at a
disposabe income level of 16.5., the consumers spend roughly 50 cent out of an additional dollar on
nondurable consumption. This is compatible with a model where low income households, when receiv-
ing an (anticipated) additional dollar of income, consume it entirely and in roughly equal proportions
on our set of nondurable consumption goods as well as on the remaining (mostly durable) consumption
items. This points clearly to a violation of the hypothesis of rational consumers. The marginal effect
diminishes to near zero for higher income levels. For incomes lower than 16.5, we find effects that are
even larger than 0.5, meaning that households spend a larger fraction of every additional dollar on
nondurable consumption than its income share. Since durable consumption is illiquid, we view such
an effect as entirely conceivable, though we want to voice caution given the aforementioned large level
of noise in the data.

In sum, we interpret our evidence as favoring the recent findings in the literature that low (disposable)
3It is also very mildly decreasing with income levels, as one could expect.
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income households spend large parts of an anticipated and possibly transitory real world shock on
consumption. Conversely, they do not engage in intertemporal smoothing to the degree that the theory
of rational consumer behavior would predict. Again, very much in parallel to recent findings, we also
observe that this effect decreases with increasing disposable income, meaning that the driver for the
higher effects at low levels is either liquidity constraints or a precautionary savings motive.

6 Conclusion

We consider in this paper an extension of the change-in-change model of Athey and Imbens (2006) to
continuous treatments. We impose similar restrictions as theirs on time effect and a crossing condition
on the cdfs of the treatment variable. This crossing condition may be seen as a generalization of the
existence of a control group in both the usual difference-in-difference and change-in-change settings.
Importantly, our framework can allow for heterogeneous time trends and treatment effects. We show
that under these conditions, some average and quantile treatment effects are point identified. We
propose nonparametric multistep estimators of these treatment effects and show their asymptotic
normality. Finally, we apply our method to the effect of disposable income on consumption. Our
results suggest large effects for low-income households, in line with recent empirical findings.
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Appendix

A Point Identification of Usual Marginal Effects

We have focused in the paper on the effect of changes of the treatment from x to x′. Other popular
effects are the following average and quantile marginal effects:

∆AME(x) ≡ E
[
dYT
dx

(x)|XT = x

]
and

∆QME(p, x) ≡ lim
h→0

F−1
YT (x+h)|XT

(p|x)− F−1
YT (x)|XT

(p|x)
h

,

where we assume that the derivatives exist.

Intuitively, because the variations induced by time are discrete, we cannot identify these parameters
everywhere unless we impose additional conditions, as in Section 3.4 below. On the other hand, if
x ' x∗t , qt(x) is also close to x. Then,

YT (qt(x))− YT (x)
qt(x)− x ' ∂YT

∂x
(x∗t ).

Moreover, if the conditional distribution of YT (x∗t ) is regular, conditioning on XT = x becomes the
same as conditioning on XT = x∗t , so that

∆ATT (x, qt(x))
qt(x)− x ' ∆AME(x∗t ).

Similarly,
∆QTT (p, x, qt(x))

qt(x)− x ' ∆QME(p, x∗t ).

Formally, identification of these marginal effects is achieved on the set X0 defined by

X0 =
{
x ∈ R : ∃(t, (xn)n∈N) ∈ {1, ..., T − 1} × (R)N : qt(x) = x, lim

n→∞
xn = x, qt(xn) 6= xn

}
.

X0 is the set of points x such that qt(x) = x for some t = 1...T − 1, while qt is different from the
identity function on the neighborhood of x. With T = 2, X0 is simply the boundary of the set of
crossing points {x : FX1(x) = FX2(x) ∈ (0, 1)}. We refer to Figure 9 for an illustration.

To make the preceding identification argument of marginal effects rigorous, the following technical
conditions are also required.

Assumption 9 (Additional regularity conditions) For all x0 ∈ X0, there exists a neighborhood V of
x0 such that:
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6

-

FX1
FX2

x ∈ X0 x′ ∈ X0x′′ 6∈ X0

Figure 9: Example of points belonging or not to X0 = {x, x′}

(i) The map x 7→ UT (x) is differentiable on V (almost surely), and there exists a random variable A
such that x 7→ E[A|XT = x] is continuous on V, and for all (x, x′) ∈ V2,∣∣∣∣∂UT∂x (x′)− ∂UT

∂x
(x′)

∣∣∣∣ ≤ A|x′ − x|.
(ii) For all x′ ∈ V, x 7→ E [∂UT /∂x(x′)|XT = x] is continuous on V.

(iii) For all x ∈ V, x′ 7→ F−1
UT (x′)|XT

(p|x) is differentiable at x0. Moreover,

(x, x′) 7→ lim
h→0

F−1
UT (x′+h)|XT

(p|x)− F−1
UT (x′)|XT

(p|x)
h

is continuous on V2.

Theorem 6 Under Assumptions 1- 9, ∆AME(x) and ∆QME(p, x) are identified, for all x ∈ X0.

B Proofs

B.1 Theorem 6

Consider a sequence (xn)n∈N converging to x ∈ X0 and such that qt(xn) 6= xn. Let us assume without
loss of generality that xn ∈ V for all n ∈ N. Given that qt is continuous and qt(x) = x, we can also
assume without loss of generality that qt(xn) ∈ V for all n ∈ N.

Now, by the mean value theorem, there exists a random variable X̃n between xn and qt(xn) such that

UT (qt(xn))− UT (xn)
qt(xn)− xn

= ∂UT
∂x

(X̃n).
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Hence,

∆ATT (xn, qt(xn))
qt(xn)− xn

=E
(
∂UT
∂x

(x)
∣∣∣∣XT = x

)
+
[
E

(
∂UT
∂x

(x)
∣∣∣∣XT = xn

)
− E

(
∂UT
∂x

(x)
∣∣∣∣XT = x

)]
+ E

(
∂UT
∂x

(X̃n)− ∂UT
∂x

(x)
∣∣∣∣XT = xn

)
. (B.1)

The term into brackets tends to zero by Assumption 9-(ii). Moreover, by Assumption 9-(i),∣∣∣∣E (∂UT∂x (X̃n)− ∂UT
∂x

(x)
∣∣∣∣XT = xn

)∣∣∣∣ ≤ max (|xn − x|, |qt(xn)− x|) sup
n∈N

E[A|XT = xn].

Given that x 7→ E[A|XT = x] is continuous, the supremum on the right-hand side is finite. Therefore,
this right-hand side tends to zero. Hence, in view of (B.1),

lim
n→∞

∆ATT (xn, qt(xn))
qt(xn)− xn

= ∆AME(x),

and this latter is identified by Theorem 1.

Let us turn to ∆QME(p, x). By the mean value theorem, there exists a random variable X̃ ′n between
xn and qt(xn) such that

∆QTT (p, xn, qt(xn))
qt(xn)− xn

=
F−1
UT (qt(xn))|XT

(p|xn)− F−1
UT (xn)|XT

(p|xn)
qt(xn)− xn

=
∂F−1

UT (x′)|XT
(p|xn)

∂x′ |x′=X̃′n
.

By Assumption 9-(iii), the last derivative converges to

∂F−1
UT (x′)|XT

(p|x)
∂x′ |x′=x = ∆QME(p, x).

The result follows as above.

B.2 Theorem 3

Suppose first that UT is locally concave on [min(x, xT (x′)), xT (x′)]. Then, for all x1 ≤ x′ ≤ x2, almost
surely,

UT (x2)− UT (x)
x2 − x

≤ g(x′, UT )− UT (x)
x′ − x

≤ UT (x1)− UT (x)
x1 − x

. (B.2)

Taking x1 = xT (x′) and x2 = xT (x′), and integrating conditional on XT = x, we obtain

(x′ − x)∆ATT (x, xT (x′))
xT (x′)− x ≤ ∆ATT (x, x′) ≤ (x′ − x)∆ATT (x, xT (x′))

xT (x′)− x .
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The inequality is simply reverted if g is locally convex. Hence, in either case,

(x′ − x) min
{

∆ATT (x, xT (x′))
xT (x′)− x ,

∆ATT (x, xT (x′))
xT (x′)− x

}
≤ ∆ATT (x, x′)

≤ (x′ − x) max
{

∆ATT (x, xT (x′))
xT (x′)− x ,

∆ATT (x, xT (x′))
xT (x′)− x

}
.

The reasoning is the same for marginal effects using, instead of Equation (B.2),

UT (x2)− UT (x)
x2 − x

≤ ∂UT
∂x

(x) ≤ UT (x1)− UT (x)
x1 − x

.

B.3 Theorem 5

Before showing the result, we state and prove a series of lemmas.

Lemma 1 (Consistency of x̂∗1) If Assumptions 1, 5 and 6-(i) hold, then x̂∗1 − x∗1 = op(1).

Proof. Let Mn(x) = −|Ψn(x)| and M(x) = − |FX2(x)− FX1(x)| and let I = [F−1
X2

(p)− ε, F−1
X2

(p) + ε]
for some ε > 0. By Assumption 6-(i), x∗1 is the unique maximum of M on I. Besides, by Glivenko-
Cantelli’s theorem,

‖Mn −M‖∞ ≤ ‖Ψn(x)− (FX2(x)− FX1(x))‖∞
≤
∥∥∥F̂X2 − FX2

∥∥∥
∞

+
∥∥∥F̂X1 − FX1

∥∥∥
∞

p−→ 0.

Fix η > 0 and letB = {x ∈ I : |x− x∗1| ≥ η}. BecauseB is compact andM is continuous, supx∈BM(x) =
maxx∈BM(x) < M(x∗1). We have

sup
x∈B

Mn(x) ≤ ‖Mn −M‖∞ + sup
x∈B

M(x) p−→ sup
x∈B

M(x) < M(x∗1). (B.3)

Suppose that x̂∗1 ∈ B and x∗1 ∈ [F̂−1
X2

(p), F̂−1
X2

(p)]. Then supx∈BMn(x) = Mn(x̂∗1) ≥Mn(x∗1). Hence,

P
(
x̂∗1 ∈ B, x∗1 ∈ [F̂−1

X2
(p), F̂−1

X2
(p)]

)
≤ P

(
sup
x∈B

Mn(x)−Mn(x∗1) ≥ 0
)
,

but the latter probability tends to zero in view of (B.3). Now, remark that x∗1 ∈ (F−1
X2

(p), F−1
X2

(p)),
so that with a probability approaching one, x∗1 ∈ [F̂−1

X2
(p), F̂−1

X2
(p)]. With probability approaching

one, we also have [F̂−1
X2

(p), F̂−1
X2

(p)] ⊂ I, so that x̂∗1 ∈ I with probability approaching one. Hence,
P (|x̂∗1 − x∗1| < η) p−→ 0.
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Lemma 2 (Convergence Rate of x̂∗1) If Assumptions 1, 5 and 6 hold, then
√
n (x̂∗1 − x∗1) = Op(1).

Proof. Let ψx(u, v) = 1{u ≤ x} − 1{v ≤ x} and Ψ(x) = E(ψx(X2, X1)). Because the set of functions
(1{. ≤ x})x is Donsker and by the conservation properties of Donsker classes, Fδ = {ψx : |x− x∗1| < δ}
is Donsker for any δ > 0. Moreover, by independence between X1 and X2,

E
(
ψx(X2, X1)− ψx∗1(X2, X1)

)2
= FX2(x) + FX1(x)− 2FX2(x)FX1(x) + FX2(x∗1) + FX1(x∗1)

− 2FX2(x∗1)FX1(x∗1)

− 2 (FX2(x ∧ x∗1) + FX1(x ∧ x∗1)− 2FX2(x ∧ x∗1)FX1(x ∧ x∗1)) .

Therefore, by continuity of FX1 and FX2 ,

E

[(
ψx(X2, X1)− ψx∗1(X2, X1)

)2
]
→ 0 as x→ x∗1

This and Lemma 1 above imply (see, e.g., van der Vaart, 1998, Lemma 19.24) that

√
n [(Ψn(x̂∗1)−Ψ(x̂∗1))− (Ψn(x∗1)−Ψ(x∗1))] = oP (1). (B.4)

Besides, Ψ(x∗1) = 0 and by the central limit theorem, Ψn(x∗1) = Op(1/
√
n). Moreover, with probability

approaching one, |Ψn(x̂∗1)| ≤ |Ψn(x∗1)|, implying Ψn(x̂∗1) = Op(1/
√
n). Combined with (B.4), this yields

√
n [Ψ(x̂∗1)−Ψ(x∗1)] = −

√
n [Ψn(x̂∗1)−Ψn(x∗1)] + op(1)

= Op(1). (B.5)

By Assumption 6-(ii) and because x̂∗1 is consistent by Lemma 1, we have, with probability approaching
one, |Ψ(x̂∗1)−Ψ(x∗1)| ≥ CR |x̂∗1 − x∗1|. This and (B.5) yields the desired result.

In the following, we let D denote the sets of càdlàg functions on Y. We also let C1 denote the subset
of D of continuously differentiable functions, with positive derivative.

Lemma 3 (Hadamard differentiability of two useful maps) The map Q : (F1, F2) 7→ F−1
1 ◦ F2(x)

is Hadamard differentiable, tangentially to the set of continuous functions, at any (F10, F20) ∈ D2

such that F10 is differentiable at F−1
10 ◦ F20(x), with positive derivative at this point. The map R :

(F1, F2, F3) 7→ F1 ◦ F−1
2 ◦ F3 is also Hadamard differentiable at any (F10, F20, F30) ∈ C1 × C1 × D

continuously differentiable functions tangentially to the set of continuous functions.

Proof. Let Q1 : (F1, F2) 7→ (F1, F2(x)) and Q2 : (F, p) 7→ F−1(p), so that Q = Q2 ◦Q1. The map Q1

is linear and continuous, and therefore Hadamard differentiable at any (F10, F20) ∈ D2. Let us prove
that Q2 is Hadamard differentiable at any (F0, p) ∈ D× (0, 1) such that F0 is differentiable at F−1

0 (p),
with a corresponding positive derivative. We have to show that for any hu converging uniformly to
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h continuous and pu → p, limu→0[(F0 + uhu)−1(pu) − F−1
0 (p)] exists. By differentiability of F−1

0 at
p, this is the case if limu→0[(F0 + uhu)−1(pu) − F−1

0 (pu)] exists. Now, an inspection of the proof of
Lemma 21.3 of van der Vaart (1998) reveals that it still applies if we replace p by pu, with pu → p.
Hence, Q2 is Hadamard differentiable tangentially to the set of continuous functions at (F0, p). By
applying the chain rule (see van der Vaart, 1998, Theorem 20.9), Q is Hadamard differentiable at any
(F10, F20) ∈ D2 such that F10 is differentiable at F−1

10 ◦ F20(x), with positive derivative at this point.
The result for R is proved in de Chaisemartin and D’Haultfœuille (2017, see the proof of Lemma
S5).

Lemma 4 (Convergence rate of q̂1(x)) Suppose that Assumption 5 holds and FX1 is differentiable at
q1(x) with F ′X1

(q1(x)) > 0. Then, q̂1(x)− q1(x) = OP (1/
√
n).

Proof. We have q1(x) = F−1
X1
◦FX2(x) and q̂1(x) = F̂−1

X1
◦ F̂X2(x). By the standard Donsker’s theorem

(see, e.g., (see, e.g., van der Vaart, 1998, Theorem 19.3),
√
n
(
F̂X1 − FX1 , F̂X2 − FX2

)
d−→ (G1 ◦ FX1 , G2 ◦ FX2),

where G1 and G2 are two independent standard Brownian bridges. Because F ′X1
(q1(x)) > 0, Lemma

3 and the functional delta method (see, e.g. van der Vaart and Wellner, 1996, Lemma 3.9.4) ensure
that

√
n (q̂1(x)− q1(x)) is asymptotically normal. The result follows.

In the following, we let wt(y, x) = FYt|Xt
(y|x)fXt(x) for t ∈ {1, 2}. Let us also denote by f̂Xt the

kernel density estimator of fXt and ŵt(y, x) = F̂Yt|Xt
(y|x)f̂Xt(x).

Lemma 5 (Behavior of some nonparametric estimators) Suppose that Assumptions 5 and 7-8 hold.
Then, for any closed and bounded interval V ⊂ X and t ∈ {1, 2},√

nhn
∥∥∥E [ŵt(., x)] /E

[
f̂Xt(x)

]
− FYt|Xt

(., x)
∥∥∥
∞
−→ 0,

sup
x∈V
‖∂xŵt(., x)‖∞ = OP (1).

Proof. First, because K(y) ≥ 0, E [ŵt(y, x)] /E
[
f̂Xt(x)

]
≤ 1 for all y. Thus,∥∥∥E [ŵt(., x)] /E

[
f̂Xt(x)

]
− FYt|Xt

(., x)
∥∥∥
∞

≤ 1
fXt(x)

[
‖E [ŵt(., x)]− w(., x)‖∞ +

∣∣∣E [f̂Xt(x)
]
− fXt(x)

∣∣∣] . (B.6)

We have
E
[
f̂Xt(x)

]
− fXt(x) =

∫
K(u) [fXt(x+ hnu)− fXt(x)] du.

Thus, because |f ′Xt
| is bounded,√

nhn
∣∣∣E [f̂Xt(x)

]
− fXt(x)

∣∣∣ ≤ C√nh5
n

∫
|t|K(u)du,
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for some C > 0. Hence, the left-hand side tends to zero by Assumption 8-(i). Now consider the first
term of (B.6). A change of variable yields

E [ŵt(y, x)]− w(y, x) =
∫
K(u) [w(y, x− hnu)− w(y, x)] du.

By a second-order Taylor expansion, we obtain

E [ŵt(y, x)]− w(y, x) =
∫
K(u)

[
−hnu∂xw(y, x) + 1

2(hnu)2∂xxw(y, x̃1)
]
du,

where x̃1 ∈ (x, x+ hnu). As a result, by Assumption 7-(ii) and 8-(ii),

‖E [ŵt(., x)]− w(., x)‖∞ ≤ C
′h2
n,

for some C ′ > 0. By Assumption 8-(i) once more, the first term of (B.6) tends to zero, which yields
the first result of the lemma.

To obtain the second result, first observe that by the triangular inequality,

sup
x∈V
‖∂xŵt(., x)‖∞ ≤ sup

x∈V
‖∂xŵt(., x)− E [ŵt(., x)]‖∞

+ sup
x∈V
‖E [ŵt(., x)]− ∂xw(., x)‖∞ + sup

x∈V
‖∂xw(., x)‖∞ . (B.7)

By Assumption 7-(iii) supx∈V ‖∂xw(., x)‖∞ < ∞. Therefore, to show the result, it suffices to show
that the two first terms of the right-hand side of (B.7) tend to zero in probability.

To analyse the first term, let us remark that

nh2
n (∂xŵt(y, x)− E[∂xŵt(y, x)])

=
n∑
i=1

1{Yit ≤ y}K ′
(
x−Xit

hn

)
− nE

[
1{Yit ≤ y}K ′

(
x−Xit

hn

)]
.

Thus, the left-hand side corresponds to W (x, f) in Einmahl and Mason (2000), with f(u) = 1{y ≤ u}
and K ′ in place of K. Moreover, fXt,Yt is continuous, fXt is continuous and infx∈V fXt(x) > 0 and K ′

satisfies their (K)-(i) and (K)-(ii). Finally, remark that Proposition 1 of Einmahl and Mason (2000)
does not rely on their condition (K)-(iii). Hence, with probability one,

lim sup
n→∞

√
nh3

n

2| log(hn)| sup
x∈V
‖∂xŵt(., x)− E[∂xŵt(., x)]‖∞ <∞.

Because nh3
n/| log(hn)| → ∞ by Assumption 8, supx∈V ‖∂xŵt(., x)− E[∂xŵt(., x)]‖∞ → 0.

Now let us turn to the second term of (B.7). First, remark that

E [∂xŵt(y, x)] = 1
h2
n

∫
w(y, x)K ′

(
x− u
hn

)
du.
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Integrating by part and using the facts that fX1 is bounded above and K(u) → 0 as |u| → ∞, we
obtain

E [∂xŵt(y, x)] =
∫
K(u)∂xw(y, x+ hnu)du.

By Assumption 7-(iii), there exists a constant C ′ > 0 such that for all y and x ∈ V , |∂xw(y, x+hnu)−
∂xw(y, x+ hnu)| ≤ C ′hn|u|. Hence,

sup
x∈V
‖E [∂xŵt(., x)]− ∂xw(., x)‖∞ ≤ C

′hn

∫
|u|K(u)du,

and the left-hand side tends to zero.

Lemma 6 (Negligible effect of estimating covariates) Suppose that x ∈ X and x̂ satisfies x̂ − x =
OP (1/

√
n). If Assumptions 5 and 7-8 hold, then, for t ∈ {1, 2},√

nhn
∥∥∥F̂Yt|Xt

(.|x̂)− F̂Yt|Xt
(.|x)

∥∥∥
∞

P−→ 0.

Proof. Let us denote by f̂Xt the kernel density estimator of fXt and ŵt(y|x) = F̂Yt|Xt
(y|x)f̂Xt(x).

With a large probability, x̂ ∈ V . Then, using the fact that F̂Yt|Xt
≤ 1,∥∥∥F̂Yt|Xt

(.|x̂)− F̂Yt|Xt
(.|x)

∥∥∥
∞

≤ 1
infx′∈V f̂Xt(x′)

[
‖ŵt(.|x̂)− ŵt(.|x)‖∞ +

∣∣∣f̂Xt(x̂)− f̂Xt(x)
∣∣∣]

≤ 1
infx′∈V f̂Xt(x′)

[
sup
x′∈V

∥∥∂xŵt(.|x′)∥∥∞ |+ sup
x′∈V

∣∣∣f̂ ′Xt
(x′)

∣∣∣] |x̂− x| .
Now, fXt and f ′Xt

are uniformly continuous on V . By Assumption 8, hn → 0 and
nh3

n/| log(hn)| → ∞. Moreover, K satisfies the conditions of Theorem A and C of Silverman (1978).
K ′ may not satisfy condition (C2) of Silverman (1978), but this condition is not needed for the neces-
sity part of his Theorem 3 that we use here. Therefore, f̂Xt and f̂ ′Xt

are uniformly consistent on V .
The result follows by x̂− x = OP (1/

√
n), hn → 0 and Lemma 5.

Lemma 7 (Asymptotic distribution of F̂Y2|X2(.|x∗1)) If Assumptions 5 and 7-8 hold, then, for t ∈
{1, 2},√

nhn
(
F̂Y2|X2(.|x)− FY2|X2(.|x), F̂Y1|X1(.|q1(x)− FY1|X1(.|q1(x)), F̂Y2|X2(.|x∗2)− FY2|X2(.|x∗1),

F̂Y1|X1(.|x∗1)− FY1|X1(.|x∗1)
)

d−→ G,

where G is a continuous Gaussian processes.

Proof. First, by Lemma 5, we have, for any x ∈ X ,∥∥∥E [F̂Y2|X2(.|x)
]
− F̂Y2|X2(.|x)

∥∥∥
∞
≤ C|hn|,
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for some C > 0. Hence, we may focus on the process Gn =
√
nhn

(
F̂Y2|X2(.|x)− E

[
F̂Y2|X2(.|x)

])
. The

proof readily extends to the multivariate process by the Cramér-Wold device. Note that convergence
of the process follows if (i) for any k ∈ N and (y1, .., yk) ∈ Yk, (Gn(y1), ...,Gn(yk)) is asymptotically
normal and (ii) Gn is asymptotically tight (see, e.g., van der Vaart, 1998, Theorem 18.14), Theo-
rem 18.14). (i) follows by the Cramér-Wold device, asymptotic normality of the Nadaraya-Watson
estimator and Assumptions 7-8 (see, e.g., Bierens, 1987).

Now, let us prove (ii). By Theorem 1.1 of Einmahl and Mason (1997), the process
√
nhn (ŵ2(., x)− E[ŵ2(., x)]) is asymptotically tight. Now, remark that

Gn = 1
fX2(x)

[√
nhn (ŵ2(., x)− w2(., x)) + FY2|X2(.|x)

√
nhn

(
f̂X2(x)− fX2(x)

)
+
(
F̂Y2|X2(.|x)− FY2|X2(.|x)

)√
nhn

(
f̂X2(x)− fX2(x)

)]
.

By Assumption 8, K is defined on a compact set and has bounded variation. Theorem 1 of Stute
(1986, see also his remark p.893) then ensures that F̂Y2|X2(.|x) is a uniformly consistent estimator
of FY2|X2(.|x). Hence, the supremum norm of the third term in the brackets converges to zero in
probability. The second term is asymptotically tight since

√
nhn

(
f̂X2(x)− fX2(x)

)
= OP (1) and

FY2|X2(.|x) is uniformly continuous on Y. Hence, Gn is asymptotically tight, and the result follows.

We now prove the theorem. Let H(y) = FY1|X1

(
F−1
Y2|X2

(FY1|X1(y|x∗1)|x∗1)|q1(x)
)
and

Ĥ(y) = F̂Y1|X1

(
F̂−1
Y2|X2

(F̂Y1|X1(y|x̂∗1)|x̂∗1)|q̂1(x)
)
.

It is easy to see that H is the cumulative distribution function of g1(Y1) conditional on X1 = q1(x).
Lemmas 6 and 7 imply that(

F̂Y2|X2(.|x), F̂Y1|X1(.|q̂1(x)), F̂Y2|X2(.|x̂∗1), F̂Y1|X1(.|x̂∗1)
)

converges to a continuous Gaussian process. By Lemma 3 and the functional delta method,
(
F̂Y2|X2(.|x), Ĥ

)
also converges to a continuous Gaussian process at the rate

√
nhn.

Now, by integration by parts for Lebesgue-Stieljes integrals,

∆ATT (x, q1(x)) =
∫ y

y
FY2|X2(y|x)−H(y)dy.

The map ϕ : (F1, F2) 7→
∫ y
y [F1(y)−F2(y)]dy, defined on the set of bounded càdlàg functions, is linear

and also continuous with respect to the supremum norm. It is therefore Hadamard differentiable.
Because ∆̂ATT (x, q1(x)) = ϕ

(
F̂Y2|X2(.|x), Ĥ

)
, it is asymptotically normal at the rate

√
nhn.

Finally, we have ∆QTT (p, x, q1(x)) = H−1(p)−F−1
Y2|X2

(p|x) and ∆̂QTT (p, x, q1(x)) = Ĥ−1(p)−F̂−1
Y2|X2

(p|x).
Because the quantile function is Hadamard differentiable (see, e.g., van der Vaart, 1998, Lemma 21.3),
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the map (F1, F2) 7→ F−1
1 (p)− F−1

2 (p) is Hadamard differentiable at any (F10, F20) such that F10 and
F20 are differentiable at F−1

10 (p) and F−1
20 (p) respectively, with positive corresponding derivatives. The

result follows by applying the functional delta method once more.

C Additional Details on the Application

We first present the piecewise linear estimator of q1(x)−x. Equivalently, we impose such a parametric
restriction on q−1

1 (x). In line with the theoretical design of the policy, we consider the specification

q−1
1 (x) = x+ ζ0(x− 12.0)+ + ζ1(x− 15.2)+ + ζ2(x− 23.4)+ − (ζ0 + ζ1 + ζ2)(x− 26.8)+, (C.1)

where x+ = max(0, x). The values 12 and 26.8 correspond to the theoretical limits outside which we
should not observe any difference between the 1987 and 1989 income. The values 15.2 and 23.4 are
the theoretical limits inside which the difference between the two incomes should be maximal – see
the right panel of Figure 4. The last term in (C.1) ensures that q−1

1 (x) = q1(x) = x when x ≥ 26.8.
We estimate (ζ0, ζ1, ζ2) by minimizing

∫ 26.8
12.0 (q−1

1 (x)− q̂−1
1 (x))2dx, where q̂−1

1 = F̂−1
X2
◦ F̂X1 .

The estimate of q1 appears in Figure 11. The estimator is close to the nonparametric estimator, but
also to the theoretical function implied by the policy design, displayed in the left panel of Figure 4.
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Notes: CEX data restricted to families with two or more children. Family income is given in thousands of 2000 US

dollars. In the left panel, the black (resp. grey) curve corresponds to family income in 1987 (resp. 1989). In the

right panel, we display the Q-Q plot, i.e. q1 against the identity function. The solid lines indicate the theoretical

limits inside which we should observe a divergence of the cdfs, given the policy design. The dotted lines are the

limits of the interval on which the efffect of the policy is supposed to be maximal (see the right panel of Figure 4).

Figure 10: Cdf’s and Q-Q plot of total family income in 1987 and 1989 with bootstrap 5–95 percentiles.
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Figure 11: Piecewise linear estimator of q1. The right panel shows bootstrap 5–95 percentiles.

Figure 12: Piecewise linear estimator of q1 with an additional knot. The right panel shows bootstrap
5–95 percentiles.
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